Guided Example #2 - The Pythagorean Identity
What does sin2x-cos2x equal?
A. 1+2cos2x B. 2sin2x-1 C. 1-2sin2x D. 1-sin2x
Step 1
Solving for cos2x in the fundamental trigonometric identity sin2x+cos2x=1, gives us cos2x=1-sin2x.
Step 2
Thus, sin2x-cos2x=sin2x-(1-sin2x)=2sin2x-1.
All Steps
Solving for cos2x in the fundamental trigonometric identity sin2x+cos2x=1, gives us cos2x=1-sin2x.
Thus, sin2x-cos2x=sin2x-(1-sin2x)=2sin2x-1.