Guided Example #2 - The Pythagorean Identity

What does sin2x-cos2x equal?

A. 1+2cos2x     B. 2sin2x-1     C. 1-2sin2x     D. 1-sin2x

 

Step 1

Solving for cos2x in the fundamental trigonometric identity sin2x+cos2x=1, gives us cos2x=1-sin2x.

Step 2

Thus, sin2x-cos2x=sin2x-(1-sin2x)=2sin2x-1.

All Steps

Solving for cos2x in the fundamental trigonometric identity sin2x+cos2x=1, gives us cos2x=1-sin2x.

Thus, sin2x-cos2x=sin2x-(1-sin2x)=2sin2x-1.