Guided Example #1 - DeMoivre's Theorem and the n-th Roots of a Complex Number Given

Use De Moivre's Theorem to find (i-3i)8.

 

Step 1

First convert the complex number z=a+bi from its standard form to its trigonometric form
z=r(cosθ+isinθ), by using r=a2+b2 and tanθ=ba.

Step 2

Here z=-1-3i . So comparing this with the standard form z=a+bi, we see that a=1 and b=-3.

Step 3

Thus, r=(12)+(-3)2)=1+3=4=2 and tanθ=-31=-3.

Step 4

Since z lies in Quadrant IV, we choose θ=arctan-31+2π=arctan-3+2π=5π3

Step 5

The trigonometric form of a complex number then is.
z=2(cos(5π3)+isin(5π3))

Step 6

Then, by De Moivre's theorem, (i -3i)8=[2(cos(5π3)+isin(5π3)]8=28(cos(85π3) +isin(85π3))

Step 7

=256[cos(40π3+isin(40π3))]=256(-12+i-32)=-128-1283i

All Steps

First convert the complex number z=a+bi from its standard form to its trigonometric form
z=r(cosθ+isinθ), by using r=a2+b2 and tanθ=ba.

Here z=-1-3i . So comparing this with the standard form z=a+bi, we see that a=1 and b=-3.

Thus, r=(12)+(-3)2)=1+3=4=2 and tanθ=-31=-3.

Since z lies in Quadrant IV, we choose θ=arctan-31+2π=arctan-3+2π=5π3

The trigonometric form of a complex number then is.
z=2(cos(5π3)+isin(5π3))

Then, by De Moivre's theorem, (i -3i)8=[2(cos(5π3)+isin(5π3)]8=28(cos(85π3) +isin(85π3))

=256[cos(40π3+isin(40π3))]=256(-12+i-32)=-128-1283i