Guided Example #3 - Curve Sketching II

Sketch the graph of y=x2x2-1


Step 1

Let's use the guidelines:
1) The domain is {x | x±1}  (-,-1)(-1,1)  (1,).

Step 2

2) The x- and y-intercepts are both 0.

Step 3

3) LaTeX: \lim_{x\to \pm\infty}\frac{x^2}{x^2-1}=\lim_{x\to\pm\infty}\frac{1}{1-\frac{1}{x^2}}=1limx±x2x21=limx±111x2=1
Therefore, the line y=1 is a horizontal asymptote.
Since the denominator is 0 when x= ±1, we compute the following limits:
LaTeX: \lim_{x\to 1^+}\frac{x^2}{x^2-1}=\inftylimx1+x2x21=       LaTeX: \lim_{x\to 1^-}\frac{x^2}{x^2-1}=-\inftylimx1x2x21=
LaTeX: \lim_{x\to -1^+}\frac{x^2}{x^2-1}=-\inftylimx1+x2x21=     LaTeX: \lim_{x\to -1^-}\frac{x^2}{x^2-1}=-\inftylimx1x2x21=
Therefore, the lines x = 1 and x = -1 are vertical asymptotes.

Step 4

4) LaTeX: f\prime(x)=\frac{2x(x^2-1)-x^2(2x)}{(x^2-1)^2}=\frac{-2x}{(x^2-1)^2}f(x)=2x(x21)x2(2x)(x21)2=2x(x21)2
We can see that f'(x)>0 when x<0 (x-1) and f'(x)<0 when x>0 (x1).
Therefore, f is increasing on (-,-1)and (-1,0) and decreasing on (0,1) and (1,).

Step 5

5) Since f' changes from positive to negative at 0, there is a local maximum at (0,0).

Step 6

6) LaTeX: f\prime\prime(x)=\frac{-2(x^2-1)^2+(2x)(2)(x^2-1)(2x)}{(x^2-1)^4}=\frac{2(3x^2+1)}{(x^2-1)^3}f(x)=2(x21)2+(2x)(2)(x21)(2x)(x21)4=2(3x2+1)(x21)3
Since 3x2+1>0 for all x, we have
f" (x)>0x2-1>0|x|>1 and similarly f'' (x)<0|x|<1 .
Hence, the graph is concave upward on the intervals (-,-1)and (1,) and concave downward on (-1,1).
Note that there are no points of inflection since 1 and -1 are not in the domain.

Step 7

7) Using the information above we sketch the graph of f.

All Steps

Let's use the guidelines:
1) The domain is {x | x±1}  (-,-1)(-1,1)  (1,).
2) The x- and y-intercepts are both 0.
3) LaTeX: \lim_{x\to \pm\infty}\frac{x^2}{x^2-1}=\lim_{x\to\pm\infty}\frac{1}{1-\frac{1}{x^2}}=1limx±x2x21=limx±111x2=1
Therefore, the line y=1 is a horizontal asymptote.
Since the denominator is 0 when x= ±1, we compute the following limits:
LaTeX: \lim_{x\to 1^+}\frac{x^2}{x^2-1}=\inftylimx1+x2x21=       LaTeX: \lim_{x\to 1^-}\frac{x^2}{x^2-1}=-\inftylimx1x2x21=
LaTeX: \lim_{x\to -1^+}\frac{x^2}{x^2-1}=-\inftylimx1+x2x21=     LaTeX: \lim_{x\to -1^-}\frac{x^2}{x^2-1}=-\inftylimx1x2x21=
Therefore, the lines x = 1 and x = -1 are vertical asymptotes.
4) LaTeX: f\prime(x)=\frac{2x(x^2-1)-x^2(2x)}{(x^2-1)^2}=\frac{-2x}{(x^2-1)^2}f(x)=2x(x21)x2(2x)(x21)2=2x(x21)2
We can see that f'(x)>0 when x<0 (x-1) and f'(x)<0 when x>0 (x1).
Therefore, f is increasing on (-,-1)and (-1,0) and decreasing on (0,1) and (1,).
5) Since f' changes from positive to negative at 0, there is a local maximum at (0,0).
6) LaTeX: f\prime\prime(x)=\frac{-2(x^2-1)^2+(2x)(2)(x^2-1)(2x)}{(x^2-1)^4}=\frac{2(3x^2+1)}{(x^2-1)^3}f(x)=2(x21)2+(2x)(2)(x21)(2x)(x21)4=2(3x2+1)(x21)3
Since 3x2+1>0 for all x, we have
f" (x)>0x2-1>0|x|>1 and similarly f'' (x)<0|x|<1 .
Hence, the graph is concave upward on the intervals (-,-1)and (1,) and concave downward on (-1,1).
Note that there are no points of inflection since 1 and -1 are not in the domain.
7) Using the information above we sketch the graph of f.