Refresher - Trigonometric Substitution

Trigonometric substitution is the substitution of trigonometric functions for other expressions. One may use the trigonometric identities to simplify certain integrals containing either

a2-u2,a2+u2,oru2-a2  where a is a constant and u is a variable.

 

 

Whenever an integral contains a2-u2, substitute u=a sinθ,du=a cosθ dθ, and then use the identity 1-sin2θ=cos2θ.

Example:

In the integral

LaTeX: \int\frac{dx}{\sqrt{a^2-x^2}}dxa2x2

we may use

x=a sinθ,dx=a cosθ dθ

LaTeX: \theta =\arcsin(\frac{x}{a})θ=arcsin(xa)

so that the integral becomes

Unknown node type: imgUnknown node type: span.

Note that the above step requires that a>0 and cosθ>0; we can choose the a to be the positive square root of a2; and we impose the restriction on θ to be -π2<θ<π2 by using the arcsine function.