Guided Example #3 - Derivatives
Find the derivative, y´y´, of y=x2cos5xy=x2cos5x.
Apply the product rule, and the chain rule.
y'=(cos5x)ddx(x2)+(x2)ddx(cos5x)
y'=(cos5x)(2x)+(x2)(-5sin5x)
Apply the product rule, and the chain rule.
y'=(cos5x)ddx(x2)+(x2)ddx(cos5x)
y'=(cos5x)(2x)+(x2)(-5sin5x)
y´=2x(cos5x)-5x2(sin5x)